
ECE 09.402 Introduction to Smart Buildings
IoT for Smart Buildings: Energy Management

System
Kevin Bellomo-Whitten∗, Eric Guidarelli†, Jeffery Welder‡

Department of Electrical and Computer Engineering
Rowan University

Glassboro, NJ USA
kevin.a.whitten@gmail.com∗, guidar01@students.rowan.edu†, Welder81@students.rowan.edu‡

I. INTRODUCTION

When designing Smart Building architecture, one of the
pivotal components is some sort of renewable energy source
to supplement building electrical loads. This allows the end
user to draw from their own source of power to both run
their renewable technologies more efficiently, as well as export
energy to the utility grid for a cost savings. The benefit that
utilities gain from this is that they have many local resources
to draw power from to help stabilize their grid.

There is, however, a caveat to this exchange of power.
There can be points in time in which the end user would
rather store their energy than use it to shed building loads.
Utilities also have down times where the exported power from
generation plants can cause frequency instability in the system.
The solution to this situation is to have some type of smart
system that manages an end users building loads as well as
their renewable assets. What our team proposes is to design,
simulate, and ultimately construct an energy management
system which monitors vital points in a given micro grid, and
intelligently directs what the end users renewable assets should
do with their energy production.

II. PROJECT REQUIREMENTS

A. Monitoring System

To fit the project in the constraints of a one-semester
time-frame, only the monitoring portion of the system was
implemented

• Simulate a micro grid over a one day time-span
– Utility power
– Renewable energy source
– Energy storage unit
– Monitoring system

• Generate mock input data for monitoring system
• Communicate between monitoring system the simulation

B. Analysis of Requirements

Simulink was chosen as the simulation software. Math-
Works has a toolbox for the SimuLink program that has power
grid components. Due to its availability and its familiarity to

team members, a Raspberry Pi was chosen as the monitoring
system that would gather the mock relevant data. The simula-
tion and monitoring system would communicate over wireless
User Datagram Protocol (UDP).

III. APPLICATION HARDWARE

The hardware used in the application is shown in the
following schematic:

Fig. 1. Schematic of Implemented Circuit

List of components and Raspberry Pi.
• Raspberry Pi

– Prototyping Wires
– power cord

• Thermistor
• Photo Resistor
• Breaker Switch

All components were arranged as voltage dividers into ADC
inputs, allowing a set range of voltages from 0 − VCC .
The photo resistor was setup to measure irradiance in the
simulation, thermistor to show temperature on the panel, and
finally a breaker switch to turn on and off loads.
Although having success simulating the two components of
the system singularly, combining them was not successful.



This was due to the type of calculations done by the pow-
ersim toolbox and its utilization of phasors. The simulation
would run a 24 hour day in 20 seconds, however when the
sensors were included, it slowed the simulation by orders of
magnitude.
UDP was used to transmit sensor and simulation data back
and forth between the host laptop and the raspberry pi.

IV. APPLICATION SOFTWARE

A. Connecting the I2c ADC to Simulink

The ADS1115 was connected to Simulink in a rather round-
about fashion. MATLAB was used to compile C language,
including library dependencies located on the raspberry pi, and
then push it onto the linux machine. Mathworks has a special
version of a linux distribution Raspian that they released in
order to run external simulations on the Pi.

B. Simulink Block Diagram

The simulated uGrid was expressed as a power network
of single-phase AC (200 V). Solar power generation (max-
imum 5kW) was attached as a renewable energy source.
Power sources were system power, solar power generation,
and a storage battery (150 V, 30 Ah). The storage battery
is controlled by a battery controller, and it absorbs surplus
power if there is surplus power in the uGrid or it supplies
insufficient power if there is a power shortage in the uGrid.
Three generic household devices consume power (maximum
2.5kW) as electric loads.

Fig. 2. Micro-Grid in Simulink

To more accurately represent a full, self-sustaining grid, the
uGrid is connected to the system power via a pole-mounted
transformer. The voltage source (66 kV) of three phase alter-
nating current of the system power is connected to a trans-
former (primary 66 kV /secondary 6.6 kV) which decreases
voltage from 66KV to 6.6 KV. The pole-mounted transformer
(primary 6.6kV /secondary 200 V) changes the voltage from
6.6 kV to single-phase AC (200 V). The frequency of AC
cycles is set to 60 Hz. The solar power generation and the
storage battery are simulated as DC power sources converted
into single-phase AC. These are both connected to the uGrid. It
is assumed that in control strategy, the uGrid does not depend
on system power for power consumption, and required power
is provided by solar power generation and the storage to the
extent possible.

C. UDP’s Role In Simulation

As shown in Figure 3, the appropriate output data was first
sent to a scope ScopeSPS to visually verify that all parts
of the simulation were being output correctly. Then, using
specialized UDP Send blocks obtained from the Simulink
Support Package for Raspberry Pi , each dataset was broadcast
to a specific port ID on the local wireless network. With the
Raspberry Pi connected to the wireless network, and the virtual
Raspberry Pi interface connected via Simulink, UDP packets
were then able to be sent from the simulation wirelessly to
the Raspberry Pi, and then broadcast on the network from the
device hardware. It was then a simple procedure to call on the
specified ports using UDP Receive blocks native in Simulink
and then viewing the outputs on a separate scope.

Fig. 3. Simulates generating, send, and receiving data over UDP

To implement the real-time sensor data readings, the simula-
tion took advantage of the Raspberry Pis built in I2C capabili-
ties. To correctly interface the I2C components with Simulink,
a block was used from the Matlab Exchange network to create
the architectural links between the physical ADS1115 readings
and the simulation.

Fig. 4. Simulink model saved to the Raspberry Pi

Using this block, the ADS1115 was connected to Simulink
in a rather roundabout fashion. Matlab was used to compile C
language, including library dependencies located on the Rasp-
berry Pi, and then push it onto the linux machine. Mathworks
has a special version of a linux distribution Raspbian that they
released in order to run external simulations on the Raspberry
Pi.

V. TESTING

Due to the taxing requirements from a simulated uGrid,
the Simulink model was set up to only simulate a 24 hour
period of load requirements. This was done using the phasor
version of Simulinks powergui, to allow for complex power



to be simulated. However, by using the phasor representation
of AC power, the simulation would not run in real-time. To
help simulate real-time, and to allow data manipulation to
occur in the simulation, a Pacer block was implemented from
the Matlab Exchange to help step into the 24 hour simulated
data. A scenario was generated to provide minute granular
data each load aspect of the Simulink model (residential
loads, PV generation). This data was created based off of the
secondary power provided by the 200VAC power transformer.
The following criteria was used in the 24 hour simulation:

• As a typical load change, the amount of electric power
load reaches peak consumption at hour 9 (6,500W), hour
19, and hour 22 (7,500W)

• From hour 20 to hour 4 (nighttime hours), solar power
generation is 0W. It reaches the peak amount (5kW) from
hours 14 to 15

• Battery control is performed by the battery controller,
which can be manually switched on or off

Other things to note are followed:
• The storage battery supplies the insufficient current when

the power of the micro-grid is insufficient and absorbs
surplus current from the micro-grid when its power is
surpasses the electric load

• A simulated loss in load occurs at hour 8 for 10 seconds.
This spike can be observed in the active power on the
secondary side of the pole transformer and the electric
power of the storage battery

• A simulated decrease in irradiance occurs at hour 11 for
1 minute. This spike can be observed in the active power
on the secondary side of the pole transformer and the
electric power of the PV generation.

The simulation results are shown in Figure 5

Fig. 5. Example output of a full days power usage

This yielded a relatively accurate wireless data transfer of
the simulated information through the Raspberry Pi (see figure
7). As shown, even interruptions of as little as 10 seconds on
the system were successfully transferred via UDP packets and
translated to a separate interface via the Raspberry Pi. This
was promising, in that we could assume that the loss was
very minuscule in the grand scheme of this design, since most
commercial monitoring systems do not get more granular than
1 to 5 minutes. Having such a fine resolution on our system
would allow for increasingly accurate readings for the end
user.

VI. FUTURE WORK

Built-in energy storage blocks in Simulink did not realis-
tically simulate storing energy. Including free weather APIs
that could provide information on cloud coverage, reducing
PV arrays effectiveness.
Further work creating a two-way smart inverter in the Simulink
environment was discussed. This would enable the possibility
of charging batteries from the grid during low cost energy
periods in the day. Implementing this would show the most
cost saving for a solar building, as this information reduces
grid stress during peaks, and allows for buildings to become
self sufficient when their system is fully charged.

VII. CONCLUSIONS

Two working components, but issues communicating be-
tween live sensor UDP and simulation UDP kept them sepa-
rate. Simulink proved to be an adequate platform for power
simulation and interface between physical sensors. Although
much time was spent learning the tools, and interactions be-
tween blocks, simulink remained an integral part of our energy
monitoring system. The group was successful implementing
monitoring and has since had many thoughts on how to further
the work to include energy management.
It can be hypothesized that should this design be implemented
using an existing uGrid, rather than a simulation, that the
data could be accurately transferred in real-time, and then
combined with sensor data also supplied. This project then
opens the door for more robust designs, including converting
this into an intelligent EMS. The RUEMS can be an extremely
using hardware/software package in the future, as its low cost
design can finally make residential monitoring systems more
appealing to the end user, thus giving more incentive to move
ones home to a Smart Home.

REFERENCES

[1] Drogon. TWiring Pi GPIO Interface Libarary for the Raspberry Pi..
[Online]. Available: http://wiringpi.com/, 2015.

[2] Vishay. NTC Thermistors, Radial Leaded, Standard Precision. Available:
http://cdn.sparkfun.com/datasheets/Sensors/Temp/ntcle100.pdfhttp://cdn.sparkfun.com/datasheets/Sensors/Temp/ntcle100.pdf,
2012

[3] Sparkfun. CdS Photoconductive Cells Online. Available:
http://cdn.sparkfun.com/datasheets/Sensors/LightImaging/SEN-
09088.pdf, 2014

[4] Pchan. Raspberry Pi 2 Model B GPIO 40 Pin Block Pinout
Online. Available: http://www.element14.com/community/docs/DOC-
73950/l/raspberry-pi-2-model-b-gpio-40-pin-block-pinout, 2015

[5] NXP Semiconductors. I2C-bus Specification and User Manual Online.
Available: http://www.nxp.com/documents/user manual/UM10204.pdf,
2015

[6] Raspberry Pi Foundation. About the Raspberry Pi Online. Available:
https://www.raspberrypi.org/, 2015

[7] Adafruit. New Product! ADS1115 16-bit ADC Online. Available:
http://www.element14.com/community/docs/DOC-73950/l/raspberry-pi-
2-model-b-gpio-40-pin-block-pinout, 2012

[8] Simplified Model of a Small Scaled Micro-Grid [Online]. Available:
http://www.mathworks.com/help/physmod/sps/examples/simplified-
model-of-a-small-scaled-micro-grid.html?refresh=true

[9] Raspberry Pi Support from Simulink [Online] Available:
http://www.mathworks.com/hardware-support/raspberry-pi-
simulink.html

[10] Real-Time Pacer for Simulink [Online]. Available:
http://www.mathworks.com/matlabcentral/fileexchange/29107-real-
time-pacer-for-simulink



[11] Simulink Raspberry Pi Simulink Driver Blocks [Online]. Available:
http://www.mathworks.com/matlabcentral/fileexchange/51232-
raspberry-pi-simulink-driver-blocks-adc-dac-pwm

[12] Simulink Raspberry Pi Driver Blocks [Online]. Available:
http://engineer.john-whittington.co.uk/2015/06/simulink-raspberry-
pi-driver-blocks/


